

Introduction to Computer Science

Exercise 3

1. Binary to integer

Calculate the value of the binary number

0 0000000 01010010 + 64 + 16 + 2 = 82
0 0000010 10000011 + 512 + 128 + 2 + 1 = 643

2. Integers to binary

Calculate the value (decimal system) of the decimal numbers

 316 256 + 32 + 16 + 8 + 4 = 0 0000001 00111100
1035 1024 + 8 + 2 + 1 = 0 0000100 00001011

3. Number Types

The input on the left produces the following output:

 int a = 62352;
 int b = 1142342;
 int c = a * b;
 double d = 1.0 * a * b;
 print(a);
 print(b);
 print(c);
 print(d);
 double e = 1 - 0.9 - 0.1;
 print(e);

Explain the output.

 The product of the two numbers a and b overflows the int range, so the sign bit is set to 1,
which is interpreted as negative number.

 Changing the result type to double (by multiplying by 1.0) results in a 64 bit double
number, which outputs the approximated (more or less correct) result.

 As some numbers like 0.1 cannot be saved correctly as binary numbers, the subtraction
of 1 – 0.9 – 0.1 doesn’t result in the value 0, but a small error.

a = 62352
b = 1142342

c = -1787135648
d = 7.1227308384 E10
e = 2.2351741790771484 E-8

4. XML vs. JSON

<TeamMeeting>
<date>2021-12-20</date>
<time>09:15</time>
<location>Room 214</location>
<participant>Rolf</participant>
<participant>Kurt</participant>
<participant>Vera</participant>

 </TeamMeeting>

5. Data Chaos

 If we don’t know the original texts encoding (ASCII, UTF, ISO-Latin-xxx, …) or character
set used, we are not able to decode the “source-code” correctly.

 We can either ask for the original character encoding and hope to be able to convert the
source code to a well-known encoding, or we ask the college to save the file in an
encoding we can read without error.

{
 "TeamMeeting": {
 "date": "2021.12.20"
 "time": "09:15"
 "location": "Room 214"
 "participants": ["Rolf", "Kurt", "Vera"]
 }
}

