
1

From the problem to the
machine program

From the idea to the software

2

Development of a program

• Software projects are divided into several phases
 Software Life Cycle

– Analysis
– System Design
– Detail Design
– Implementation and testing
– Operation and maintenance

Beatrice Amrhein, BFH

3

The phases of the Software Life Cycle

1. Problem analysis (Requirements analysis)
-> is carried out together with the client.
-> results in a software requirements specification.

2. System design: the tasks are divided into modules or components.
-> Division into “smaller” problems increases the comprehension.
-> improve correctness and reliability.

3. Detail Design: (Program specification)
-> define the data structures.
-> develop the algorithms.

Beatrice Amrhein, BFH

4

Development of a program

4. Implementation and testing
-> Development of programming code.
-> Implementation of test cases

5. Operation and maintenance
While using the software, errors or new requests to the software are found.
This may cause a return to problem analysis, which creates a cycle.

Beatrice Amrhein, BFH

5

Compilation vs. Interpretation

Programs are either interpreted or compiled:

Compilation
Each command of the program written in the higher programming language is translated
into a corresponding sequence of machine code and stored in a (binary) file. The
application is then executed from this file.

This technique of translation is called compilation.
The program responsible for translation is called a compiler.

Beatrice Amrhein, BFH

6

Compilation vs. Interpretation

• Interpretation
– The commands are translated one at a time into corresponding sequences of

machine commands and then executed.
This technique, in which no new file must be created in machine code, is called
interpretation.

– The program responsible for translating and executing each command is called an
interpreter.

Examples: Script languages such as Perl, Python, JavaScript, ...

Beatrice Amrhein, BFH

7

Compilation vs. Interpretation

Compilation and interpretation in comparison:
• During compilation, the entire program is translated into machine code, so you have two files:

– the program code in the higher programming language, which is readable by humans and
but can’t be performed on the machine, and

– the machine program (machine code), which can be carried out on the machine.

• In case of interpretation, each command of the program is executed step by step after
translation. As the translation takes time, interpreted applications are not as performant as
compiled ones.

Beatrice Amrhein, BFH

8

Programming Tools

Modern programming languages, such as Java, C#, . . . use a mixture of both methods.
Such programs are translated into virtual machine code (e.g. Java byte code or IL code).

Java Virtual Machine (JVM)
.Net Common Language Runtime

9

Programming Tools

• Virtual machine code is first interpreted by a virtual machine and is only
converted into machine code at run time.

• Such programs can run on any system that has a corresponding virtual machine
installed.

• In addition, each command can be checked directly during execution (e.g. for
allowed memory or hard disk access).

• These benefits usually compensate for a slightly higher runtime.

Beatrice Amrhein, BFH

10

The Compiler

For the computer to run a program (source code), it must first be converted
(translated /compiled) into machine code.

11

The Compiler

1. Analysis (Lexical and Syntactic)
The source program is checked and
broken down into its components. An
intermediate representation, a so-called
parse tree, is generated.

2. Synthesis
The desired target program (machine
code) is generated from the parse tree.

Compilation consists of the following steps:

12

The Compiler

Special features of compilation

– The program can consist of several modules (program files), all of which are
to be compiled individually before they are "bound together" with the linker.

– If the machine code uses library routines, the code must be linked to the
appropriate libraries.

Beatrice Amrhein, BFH

13

Debugging

…provides an easy way to view the running code.

… allows you to go through the program code step by step and show the
assignment of all variables.

… is used to search for programming errors.

Debugging

Beatrice Amrhein, BFH

14

Higher programming languages

• In machine code, each step must be at the level of address registers and data
registers (machine instructions).

• A programmer must be able to focus on solving the application problem.

• For this reason, the first programming languages such as FORTRAN and ALGOL
emerged in the late 1950s.

• Higher programming languages should make it possible to specify a problem
solution in a subject-specific notation (in the problem space).

15

Higher programming languages

• The compiler can convert the source code into machine code.
• Higher programming languages are intended to facilitate the implementation of

solutions and are therefore also referred to as problem-oriented programming
languages.

• Applications for programming languages include data management tasks (business
objects) or technical-scientific tasks (statistics, research, data mining, ...)

• Today, there are hundreds of programming languages. They differ in the means of
expression for various problem solutions.

Beatrice Amrhein, BFH

16

Higher programming languages

Programming languages are assigned to different generations:
Example Characteristic

1G Machine Code Binary Code
2G Assembler Code Symbolic instructions
3G Imperative programming languages

(Fortan, Cobol, …)
Hardware independent

3G+ Object oriented programming
language (Pascal, Java, C#, …)

Structured / object oriented,
(abstract data types)

4G Declarative programming languages
(Prolog, SQL, XSL, …)

Rule based

…

17

Higher programming languages

• Higher programming languages are from the 3rd generation languages.
• The concepts of these languages include elements such as

– data types and variables for storing data,
– Operators and expressions for logical linking of data,
– Control or control instructions in the form of branches and loops (program flow

control).
– …

18

In its most general form, object-oriented programs consist of:
• data (objects, information) and
• operations or algorithms on the objects.

The operations cause the data to be brought from an original state (initial or input
value) to a final state via any intermediate values that may be necessary.

OO-Program = Data + Algorithm

Beatrice Amrhein, BFH

19

Example: Excerpt of a class diagram for a public lending library (books and movies).
As soon as a customer lends a book, a certain amount is withdrawn from its account and

the book state changes from available to lent.

OO-Program = Data + Algorithm

20

From the specification to the
code

21

Specification of a task

Before starting the coding, the problem to be solved must be specified.
A specification is a complete, detailed and unambiguous description of the
problem.

• Complete: all relevant information is known, there are no open points.
• Detailed: the specification is so precise that it can be implemented step by

step.
• Unambiguous: criteria are given which define whether a solution is correct.

Beatrice Amrhein, BFH

22

Algorithms

• After a problem is specified, a solution must be designed.

• Since the solution is to be executed by a computer, each step must be prescribed
precisely and step by step.

• This is done by an algorithm.

Beatrice Amrhein, BFH

23

The term algorithm

Informal characterization:

An algorithm is a detailed and explicit directive for the resolution of a problem, precisely
formulated, presented in a finite description and effectively executable.

Example characterization:
• The total amount of the invoice consists of the individual amounts of the flight, the

accommodation (hotel), meals (half or full board) as well as the booked additional services
(excursions and wellness treatments).

• In the months of January to May, a 25% discount is granted on the accommodation.

Beatrice Amrhein, BFH

24

Algorithm

Example:
– Get the transaction from the database.
– Read from the database the price p1 for the flight included in the booking.
– Read from the database the price p2 for the number of hotel nights booked.
– Read from the database the price p3 for the number of booked meals per day (half or full

board).
– If one or more excursions are included in the booking, read the price for each included

excursion pa1 to pan from the database.
– If one or more wellness offers are included in the booking, read the price for each included

offer pw1 to pwm from the database.
– If the trip does not take place in the months of January to May, sum up all prices pi received

in this way.

25

Formulation of an algorithm

For the formulation of algorithms, we use variables.

• Variables are memory slots to which a name is given in a program. The value of
variables can usually be changed during the program's runtime.

• Constants are variables that are initially assigned a value that can`t be changed
later.

26

Formulation of an algorithm

The formulation of an algorithm can be done in natural or formal language or
graphically.

Algorithms can be described using structured text:

Beatrice Amrhein, BFH

27

Formulation of an algorithm

To find the largest number in a list of
numbers:
• Set the first value of the list as

candidate for the largest value.
• If the next value is larger than the

actual candidate, set this value as new
candidate for the largest value.

• Repeat this for all values of the list.
• Return the found value as result of the

algorithm.

Beatrice Amrhein, BFH

28

Formulation and presentation of an algorithm

As a Python function, for example, this looks like this

17

Loop across all items in the list:
If the found value is greater than the previous
largest, then the found value becomes the new
candidate.
In the end, the content of the largest variable is
displayed as a result (return largest)

29

Formulation of a “find maximum value” algorithm by an activity
diagram

Formulation and presentation of an algorithm

Beatrice Amrhein, BFH

30

The process of “lending a book in the public library”.

Lending Algorithm

31

Boolean algebra

32

Boolean algebra

George Boole
− English mathematicians of the 19th century
− Formal view of digital structures

Boolean algebra has only two values: 0 (False) and 1 (True).
− Is the basis for today's computer hardware.
− Defining decisions if (condition) .
− The result of a condition is True or False.
− In Boolean algebra there are three operators: and, or and not

Beatrice Amrhein, BFH

33

The or operator

• Or operator is a logical sum:

– The result of an Or operation is 1 (True), if at least one of the two variables in the
term a or b has value 1.

Beatrice Amrhein, BFH

34

The or operator

An overall condition formed with the Or operator is true if (at least) one of the
individual conditions is true.

Example: the following python function returns True if two of the three numbers x,
y, z are equal.

def twoEqual(x, y, z):
if x == y or x == z:

return True
if y == x or y == z:

return True
return False

Beatrice Amrhein, BFH

35

The and operator

• The And operator is also called a logical product.
• The result of an And operation is 1 if both variables in a and b have a value of 1.
• Two conditions associated with the And operator only are true if both individual

conditions are true.

Beatrice Amrhein, BFH

(it's Friday) and (it‘s raining) and (the sun shines) not impossible but rare

(the person is younger than 6) and (the person is older than 50) cannot be fulfilled

36

The and operator

An overall condition formed with the and operator is true if all of the individual conditions are
true.

Example: the max function returns the largest of the three numbers x, y, z.

def max(x, y, z):
if x >= y and x >= z:

return x
if y >= x and y >= z:

return y
if z >= x and z >= y:

return z

Beatrice Amrhein, BFH

37

The not operator

• The not operator turns True to False and vice versa (inversion).

• The result of a not operation is 1 if the corresponding variable has value 0. If the
variable has a value of 1, the result is 0.

Beatrice Amrhein, BFH

not(the person is younger than 6) or (the person is older than 50)
is True for all persons older than 6

38

A condition formed with the not operator is True if the inner condition is False.

Example: the function allDifferent returns True if the three numbers x, y, z are all
different.

def allDifferent(x, y, z):
if not(x == y) and not(x == z) and not(y == z):

return True
return False

The not operator

if x != y and x != z and y != z:

Beatrice Amrhein, BFH

	From the problem to the machine program
	Development of a program
	The phases of the Software Life Cycle
	Development of a program
	Compilation vs. Interpretation
	Compilation vs. Interpretation
	Compilation vs. Interpretation
	Programming Tools
	Programming Tools
	The Compiler
	The Compiler
	The Compiler
	Debugging
	Higher programming languages
	Higher programming languages
	Higher programming languages
	Higher programming languages
	OO-Program = Data + Algorithm
	OO-Program = Data + Algorithm
	Slide Number 20
	Specification of a task
	Algorithms
	The term algorithm
	Algorithm
	Formulation of an algorithm
	Formulation of an algorithm
	Formulation of an algorithm
	Formulation and presentation of an algorithm
	Formulation and presentation of an algorithm
	Lending Algorithm
	Slide Number 31
	Boolean algebra
	The or operator
	The or operator
	The and operator
	The and operator
	The not operator
	The not operator

