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Orientation
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Object-oriented programming
• Object-oriented programming summarizes data and its 

functions at one place.
• The data (information) of the objects is called properties or 

attributes of the object.
• The functions that can be applied to this data are called 

methods.
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Object-oriented programming

• Objects are defined using classes. 
• Classes are templates (blueprints) for objects.
• A class is a formal description of how an object is built 

• what attributes it has 
• what methods it has. 

• Objects are created according to their template (the class). 
• Instead of object, we also speak of instances of a class. 
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Example: Bank customer

• Customer and his account
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Attributes,
Properties

Methods



Encapsulation

• Another major advantage of OOP is the encapsulation of the objects 
data. 

• Access to the attributes of an object is done through access methods. 
• Access methods can contain plausibility tests, data type conversions, 

or arbitrary calculation.
• You can also restrict the access (e.g. only read and no writing access).
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The init method determines what attributes the class has and 
how it is backed by data. 

 The other methods have to be added

The Customer class
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# Customer of a bank
class Customer():
#constructor method
def __init__(self, id, lastName, firstName, address):
self.__id = id
self.__lastName = lastName
self.__firstName = firstName
self.__address = address



The Account class
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The init-method of the account class has no argument for the 
account balance. The account balance is zero at the beginning, so 
the parameter is unnecessary.
# account class
class Account():
# constructor method to create new account objects
def __init__(self, number, customer):
self.__customer = customer
self.__id = number
self.__balance = 0

 The other methods of the class have to be added.



• In addition to the init method, the 
class needs access methods 
(get/set) for the attributes of the 
class.

• The customer id is immutable (no 
set-method).

Methods of Customer class
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def getId(self):
return self.__id

def getLastname(self):
return self.__lastName

def setLastname(self, name):
self.__lastName = name

. . . 

def getAddress(self):
return self.__address

def setAddress(self, address):
self.__address = address



Methods of Account class
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The Account class has methods for the deposition and withdrawal of 
money.

def getId(self):
return self.__id

def getCustomer(self):
return self.__customer

def getBalance(self):
return self.__balance

def deposit(self, amount):
self.__balance = self.__balance + amount

def withdraw(self, amount):
self.__balance = self.__balance - amount

Access methods for the account 
id, customer, and account balance

Methods for depositing and 
withdrawing money.



Usage of the Customer class
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import Customer as c

# create new customer Peter
peter = c.Customer(17, "Peter", "Muster", "Bern")

# create new customer Julius
julius = c.Customer(102, "Julius", "Muster", "Bern")

# create new customer Julia
julia = c.Customer(103, "Julia", "Muster", "Bern")



Usage of the Account class
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Create the Accounts and deposit and withdraw some 
money.
import Account as a

# create account for Peter Muster
k1 = a.Account(10, peter)

# create account for Julius Muster
k2 = a.Account(20, julius)

# create account for Julia Muster
k3 = a.Account(30, julia)

# deposit 5000 on Peters account 
k1.deposit(5000)

# withdraw 50 from Julius account
k2.withdraw(50)



Magic Methods
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Magic methods are internal methods that are indirectly called in 
special situations:

Create new objects
__init__ (. . . ) 

Converting objects to texts (to print them)
__str__ (. . . ) 

Explicit deletion of objects (clean up)
__del__ (. . . ) 



Usage in the Account class
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Output of the account balances and their owners using a 
str method in the Account class: 

Ausgabe

def __str__(self):
return str(“Account No:" + str(self.__id) + " customer " + 

str(self.__customer) + ", balance " + 
str(self.__balance))



Implementation of magic methods
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class Bank():

# create a new bank object
def __init__(self):
self.__customers = list()
self.__accounts = dict()

# delete all data
def __del__(self):
self.__customers = None
self.__accounts = None

# create string for printing
def __str__(self):
return str("Number of customers:" + 

str(len(self.__customers)) +
" Number of accounts:" + 

str(len(self.__accounts)))



Bank class, further methods
# insert customer
def add_customer(self, customer):

self.__customers.append(customer)
# insert account
def add_account(self, account,):

self.__accounts[account.getCustomer()] = account
# find account with number nr
def get_account(self, customer):

return self.__accounts.get(customer)
# get all accounts
def get_accounts(self):

return self.__accounts.values()
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Objects in the variable explorer
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In the variable explorer we find all objects of class Account, Customer, 
Bank, …. with their values.
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