
Classes and Object
Orientation

1

Object-oriented programming
• Object-oriented programming summarizes data and its

functions at one place.
• The data (information) of the objects is called properties or

attributes of the object.
• The functions that can be applied to this data are called

methods.

2

Object-oriented programming

• Objects are defined using classes.
• Classes are templates (blueprints) for objects.
• A class is a formal description of how an object is built

• what attributes it has
• what methods it has.

• Objects are created according to their template (the class).
• Instead of object, we also speak of instances of a class.

3

Example: Bank customer

• Customer and his account

4

Attributes,
Properties

Methods

Encapsulation

• Another major advantage of OOP is the encapsulation of the objects
data.

• Access to the attributes of an object is done through access methods.
• Access methods can contain plausibility tests, data type conversions,

or arbitrary calculation.
• You can also restrict the access (e.g. only read and no writing access).

5

The init method determines what attributes the class has and
how it is backed by data.

 The other methods have to be added

The Customer class

6

Customer of a bank
class Customer():
#constructor method
def __init__(self, id, lastName, firstName, address):
self.__id = id
self.__lastName = lastName
self.__firstName = firstName
self.__address = address

The Account class

7

The init-method of the account class has no argument for the
account balance. The account balance is zero at the beginning, so
the parameter is unnecessary.
account class
class Account():
constructor method to create new account objects
def __init__(self, number, customer):
self.__customer = customer
self.__id = number
self.__balance = 0

 The other methods of the class have to be added.

• In addition to the init method, the
class needs access methods
(get/set) for the attributes of the
class.

• The customer id is immutable (no
set-method).

Methods of Customer class

8

def getId(self):
return self.__id

def getLastname(self):
return self.__lastName

def setLastname(self, name):
self.__lastName = name

. . .

def getAddress(self):
return self.__address

def setAddress(self, address):
self.__address = address

Methods of Account class

9

The Account class has methods for the deposition and withdrawal of
money.

def getId(self):
return self.__id

def getCustomer(self):
return self.__customer

def getBalance(self):
return self.__balance

def deposit(self, amount):
self.__balance = self.__balance + amount

def withdraw(self, amount):
self.__balance = self.__balance - amount

Access methods for the account
id, customer, and account balance

Methods for depositing and
withdrawing money.

Usage of the Customer class

10

import Customer as c

create new customer Peter
peter = c.Customer(17, "Peter", "Muster", "Bern")

create new customer Julius
julius = c.Customer(102, "Julius", "Muster", "Bern")

create new customer Julia
julia = c.Customer(103, "Julia", "Muster", "Bern")

Usage of the Account class

11

Create the Accounts and deposit and withdraw some
money.
import Account as a

create account for Peter Muster
k1 = a.Account(10, peter)

create account for Julius Muster
k2 = a.Account(20, julius)

create account for Julia Muster
k3 = a.Account(30, julia)

deposit 5000 on Peters account
k1.deposit(5000)

withdraw 50 from Julius account
k2.withdraw(50)

Magic Methods

12

Magic methods are internal methods that are indirectly called in
special situations:

Create new objects
__init__ (. . .)

Converting objects to texts (to print them)
__str__ (. . .)

Explicit deletion of objects (clean up)
__del__ (. . .)

Usage in the Account class

13

Output of the account balances and their owners using a
str method in the Account class:

Ausgabe

def __str__(self):
return str(“Account No:" + str(self.__id) + " customer " +

str(self.__customer) + ", balance " +
str(self.__balance))

Implementation of magic methods

14

class Bank():

create a new bank object
def __init__(self):
self.__customers = list()
self.__accounts = dict()

delete all data
def __del__(self):
self.__customers = None
self.__accounts = None

create string for printing
def __str__(self):
return str("Number of customers:" +

str(len(self.__customers)) +
" Number of accounts:" +

str(len(self.__accounts)))

Bank class, further methods
insert customer
def add_customer(self, customer):

self.__customers.append(customer)
insert account
def add_account(self, account,):

self.__accounts[account.getCustomer()] = account
find account with number nr
def get_account(self, customer):

return self.__accounts.get(customer)
get all accounts
def get_accounts(self):

return self.__accounts.values()

15

Objects in the variable explorer

16

In the variable explorer we find all objects of class Account, Customer,
Bank, …. with their values.

	Classes and Object Orientation
	Object-oriented programming
	Object-oriented programming
	Example: Bank customer
	Encapsulation
	The Customer class
	The Account class
	Methods of Customer class
	Methods of Account class
	Usage of the Customer class
	Usage of the Account class
	Magic Methods
	Usage in the Account class
	Implementation of magic methods
	Bank class, further methods
	Objects in the variable explorer

