Classes and Inheritence

Berner
F Fachhochschule
H

What is inheritance in OOP?

* Inheritance in OOPS

e ...is the process of passing on characteristics from one parent
to a child.

 ...enables you to create classes that inherit from another
class, and then enhance the list properties and methods of
the child classes without affecting the parent class.

* Inheritance allows programs to create more complex structures,
which can save time and effort

Bank Example

e Customer class inherits from person class

* Saving account class inherits from account class

Person

- firstname : string
- lasthame : string

+ ___init__ (self, firsthame, lasthame)
+ getFirstname() : string
+ getLastname() : string

i

Customer

-id :int

+ _init_ (self, id, firsthame, lasthame)
+ getld() : int
+ getAccounts() : list

Account

-id : int
- balance : float

+ __init__(self, id)
+ getBalance() : float
+ deposit(amount) : void

i

SavingAccount

- interestRate : float

+ __init__(self, id)
+ getinterestRate() : float
+ setinterestRate(rate) : void

The Person class

The Person class is the base class. It defines some member

variables and methods.

class Person:
def init_ (self, fname, lname):
self. firstname = fname
self. 1lastname = lnhame

def getFirstname(self):
return self. firstname

def getLastname(self):
return self. lastname

def _ str_ (self):

return self. firstname + " " + self.

___lastname

The Customer class

The customer class inherits from the person class. Therefore, the
member variables and methods are inherited. The constructor of
the base has to be called by super(). _init_ (...).

Customer of a class
class Customer(Person):
def init (self, id, lastname, firstname):
super().__init_ (lastname, firstname)
self. id = id
self. accountList = list()

def getId(self):
return self. id

def getAccounts(self):
return self. accountlList

The Account class

The account class is the class Account():

base class of the def _init_(self, id):
] . self. id = id

different kind of bank self._ balance = ©

accounts. def getId(self):

return self. id

def getBalance(self):
return self. balance

def deposit(self, amount):
self. balance = self. balance + amount

def _ str_ (self):
return str("Account Nr:" + str(self. id) +
", Balance " + str(self._ balance))

Berner
F Fachhochschule

The SavingAccount class

The SavingAccount class inherits from the Account class.

class SavingAccount(Account):
def _init (self, id, interestRate):
super(). init_ (id)
self. interestRate = interestRate

def getInterestRate(self):
return self. interestRate

def setInterestRate(self, rate):
self. interestRate = rate

Berner
F Fachhochschule

The Bank class

The Bank class
uses the customer
and account
classes.

Berner
F Fachhochschule

class
def

Bank():

__init_ (self):

self. customers = dict()
self. accounts = dict()

def

def

def

def

def

addClient(self, client):
self. customers[client.getId()] = client

addAccount(self, client, account):
self. accounts[client.getId()] = account

getClient(self, id):
return self. customers.get(id)

getAccount(self, customer):
return self. accounts.get(customer.getId())

getAccounts(self):
return self. accounts

Usage of Bank, Customer and Account classes

import Customer as c
import Account as a

bank = Bank()

peter = c.Customer(17, "Peter", "Muster")
bank.addClient(peter)

bank.addAccount(peter,a.SavingAccount (10, 2))
bank.getAccount(peter).deposit(5000)

for key,value in bank.getAccounts().items():
print(bank.getClient(key), " -> ", value)

	Classes and Inheritence
	What is inheritance in OOP?
	Bank Example
	The Person class
	The Customer class
	The Account class
	The SavingAccount class
	The Bank class
	Usage of Bank, Customer and Account classes

