
Short Summary

1

2

Data Types

• none → no data type
• bool → True, False
• int → 0, 1, -1, 2, … (supports +, -, *, /, %, ...)
• float → 0.1, -5.23, … (supports +, -, *, /, …)
• string → "Hallo!" (supports + to concatenate strings)

• Accessing parts of a string: a = "abcdefghij"
a[2:10:3] → "cfi", a[-1:-9:-1] → "jihgfedc“

• Accessing the length of a string: len(a) → 10

• Type Conversion: int(), str(), float(), bool(), type()

Control Structures: if, elif, else

• The keywords if, elif and else start indented blocks
• The if-block is executed only if the condition after the if is fulfilled

3

• The keywords if, elif and else start indented blocks

• The elif-block is executed only if the if-block is not executed and the
condition after the elif is fulfilled

→

→

→

4

Control Structures: if, elif, else

• The keywords if, elif and else start indented blocks
• The else-block is only executed if none of the if-blocks and elif-

blocks were executed

→

5

Control Structures: if, elif, else

Control Structures: while
• The keyword while starts a new indented block, which is

executed for as long as the condition after the while is
fulfilled

→

6

Control Structures: for - in
• The keywords for iterator in iterable start a new indented block

• The block is executed for every instance the iterator can
assume in the iterable

7

• A list is an ordered assortment of values
• A list is generated by assigning some list elements
myList = [. . .], an empty list by myList = list()

 The keyword in is used to check, whether an element is in a
list

→

8

Lists

• Elements and parts of the list are accessed using […]
• Lists are iterable

→

9

Lists: Access to Lists

 Sort lists with sort() method
→

 Concatenate lists with "+" or extend()

→

 Reverse the order of the list items with reverse()
→

10

Lists: Methods on Lists

 Insert new items with insert() or append()

→
 Delete items with remove() or pop()

→

11

Lists: Methods on Lists

• A set is disordered and does not have duplicates
• A set is generated by assigning set elements, i.e.
mySet = {. . . }, an empty set by mySet = set()

 The keyword in is used to check, whether an element is in a
set

→

 Sets are iterable

12

Sets

• Unions of sets can be formed using the union() method or with
the "|" sign

• The intersection of two quantities can be found using the
intersection() method or with the "&" sign

• The difference of two sets can be formed with the difference()
method or with "–"

→

13

Sets: Set operations

• A dictionary is a set of keys and associated values
• A dictionary is generated by giving the values to the

respective keys, either with { } or with dict()

 The keyword in is used to check, whether a key is in a
dictionary

 Dictionaries are iterable

14

Dictionaries

Dictionaries: Methods

alph.keys() returns the list of keys

alph.values() returns the list of values

alph.get(key) returns the value of this key

alph.pop(key) deletes the entry for this key

len(alph) returns the number of entries

key in alph returns true if the key exists

alph.clear() deletes all entries

15

Classes are defined with the class keyword and need an
__init__ method to create objects of this type.

Classes

16

class Person:
def __init__(self, fname, lname):
self.__firstname = fname
self.__lastname = lname

def getFirstname(self):
return self.__firstname

def getLastname(self):
return self.__lastname

def __str__(self):
return self.__firstname + " " + self.__lastname

Inheritance

17

The customer class inherits from the person class. Therefore, the
member variables and methods are inherited. The constructor of
the base has to be called by super().__init__(…).

Customer of a class
class Customer(Person):
def __init__(self, id, lastname, firstname):
super().__init__(lastname, firstname)
self.__id = id

def getId(self):
return self.__id

def getAccounts(self):
return self.__accountList

Exception handling
To prevent the program from crashing, critical code can be wrapped
into a try . . . except construct

while True:
try:

v = input("Please enter an integer: ")
x = int(v)

except ValueError:
print("Invalid input, please try again")

else:
return x

18

The input is repeated until the user
enters an integer. Output

File IO
We can open, read and write text from and to files.
Examples for reading and writing:

19

	Slide Number 1
	Data Types
	Control Structures: if, elif, else
	Slide Number 4
	Control Structures: if, elif, else
	Slide Number 6
	Control Structures: for - in
	Lists
	Lists: Access to Lists
	Lists: Methods on Lists
	Lists: Methods on Lists
	Sets
	Sets: Set operations
	Dictionaries
	Slide Number 15
	Classes
	Inheritance
	Exception handling
	File IO

